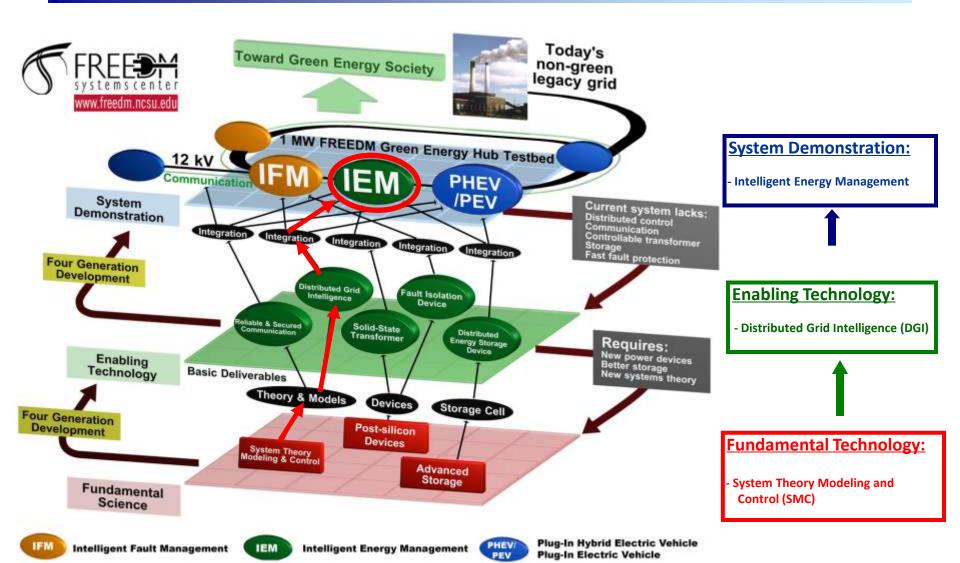


Incremental Cost Consensus Algorithm in a Smart Grid Environment

Y3.F.C1 Distributed Control of FREEDM System

Ziang Zhang
PI: Dr. Mo-Yuen Chow
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, North Carolina



Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate Analysis
- Future Plan

Background

Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate Analysis
- Future Plan

Motivation & Goal

Challenges for the Current Power Grid

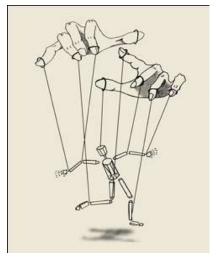
- Lack of support for Distributed Generation and Renewable Energy
- Lack of flexibility and adaptability
- Vulnerability to Cyber attack, natural disasters and human errors
- \$100 Billion annual loss due to power quality problems
- Aging Components

Solution:

Take advantages from the new technologies -- make the grid smarter

Project Goal

Design and implement high performance distributed controls to achieve realtime intelligent power allocation in FREEDM system.



Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate Analysis
- Future Plan

Central Control vs. Distributed Control

Puppet

VS.

School of fish

	Central Control	Distributed Control [1]	
System	Puppets and Puppeteer	School of fish	

groups on the move", *Nature* 433, 513-516 (3 February 2005)

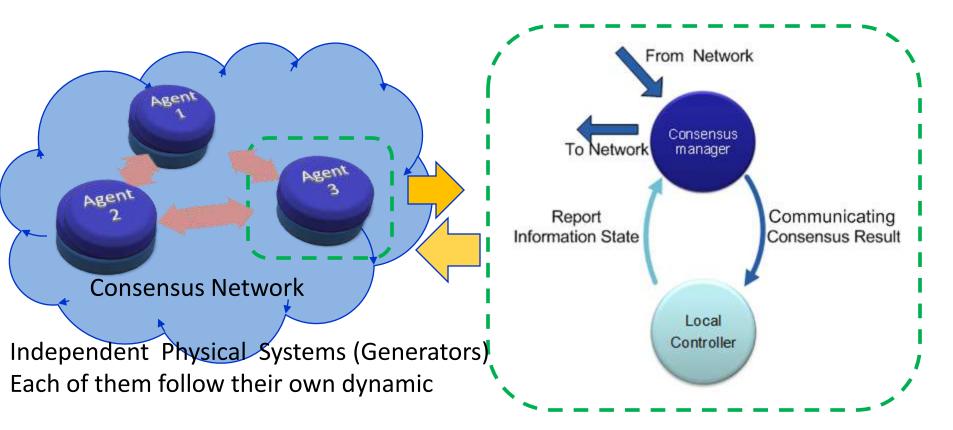
	Central Controlled System
Pros	 Control algorithm is relatively simple
Cons	 Computational limitation of central controller Communication limitation of central controller Single point of failure will affect the entire system
Usages	Normally more appropriate for systems with simple control

What is consensus?

A school of fish

Goal: swimming towards one

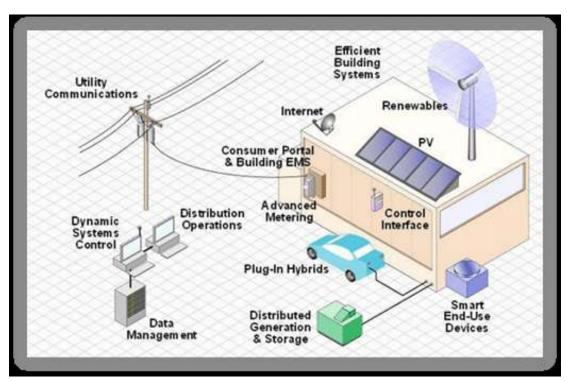
same direction


Consensus Chorus

Goal: Synchronize the melody

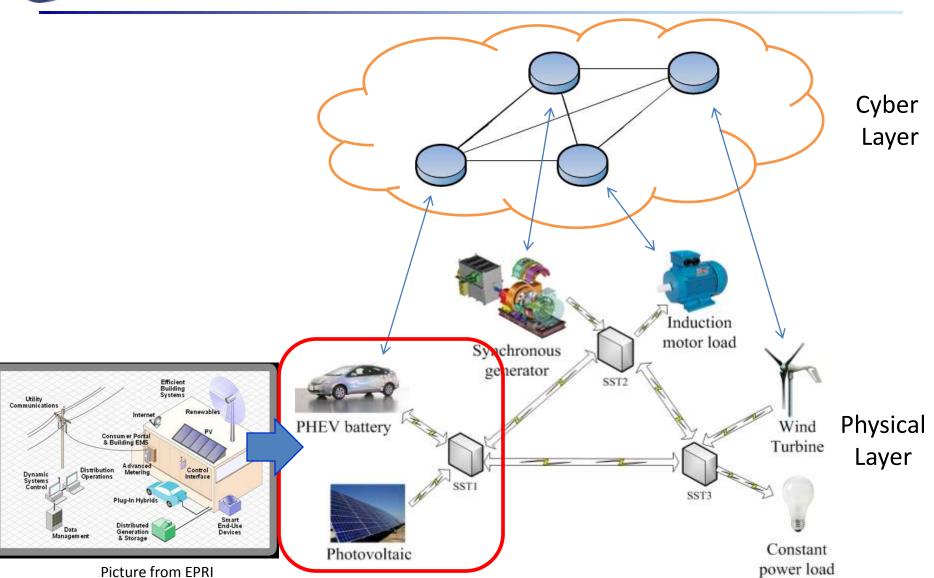
[1]. Larissa Conradt and Timothy J. Roper, "Consensus decision making in animals", Trends in Ecology & Evolution, Volume 20, Issue 8, August 2005, Pages 449-456.

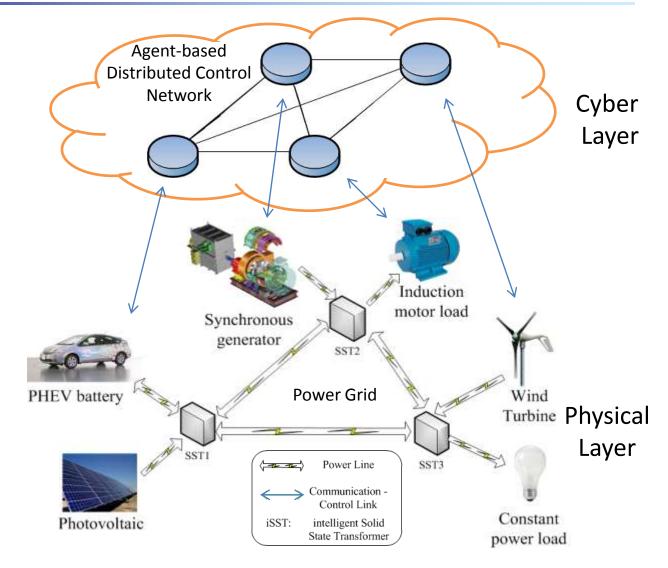
How can consensus be reached?


A sufficient condition for reach consensus: If there is a directed spanning tree* exists in the communication network, then consensus can be reached. **

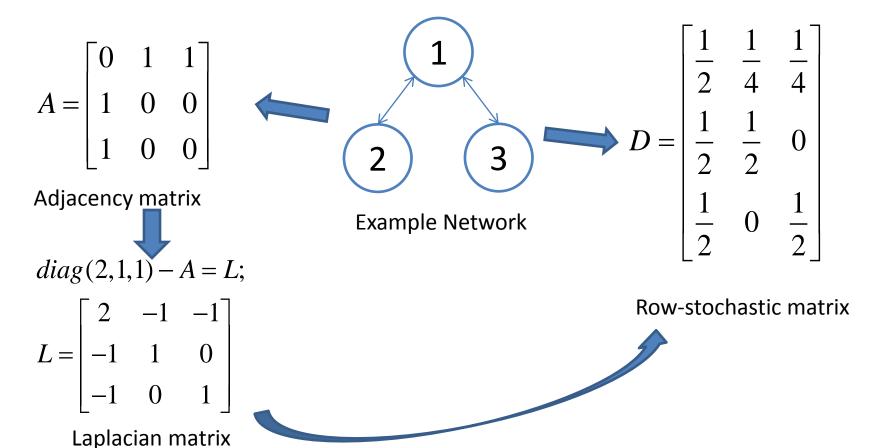
^{*}Spanning tree: a minimal set of edges that connect all nodes

^{**} Wei Ren Randal W. Beard Ella M. Atkins, "A Survey of Consensus Problems in Multi-agent Coordination", 2005 American Control Conference June, 2005. Portland, OR, USA


Networked Control System


Picture from EPRI

Networkedh@ioatroxs@rstem



Graph Theory Modeling

Adjacency matrix of a finite graph G on n vertices is the $n \times n$ matrix where the entry a_{ij} is the number of edges from vertex i to vertex j, a_{ij} =0 represent that agent i cannot receive information from agent j

First-order Consensus Algorithm

- Consensus problem modeling
 - Local information state ξ_i
 - First-order system $\dot{\xi}_i = \xi_i, i = 1,...,n$
- Consensus algorithm:

	Scalar From	Matrix Form
Continuous –time	$\dot{\xi}_i = -\sum_{j=1}^n a_{ij}(\xi_i - \xi_j), i = 1,, n$	$\dot{\xi} = -L_{_{\! n}} \xi$
Discrete-time	$\xi_i[k+1] = \sum_{j=1}^n d_{ij} \xi_j[k], i = 1,, n$	$\xi[k+1] = D_n \xi[k]$

Where L_n is the Laplacian matrix associated with A, and D_n is Row-stochastic matrix associated with A.

$$D = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

k	0	1	2	3
ξ_1	-2	-2*1/2+1/4+3/4 = 0	0	0
ξ_2	1	-2*1/2+1*1/2 = -0.5	-0.25	-0.125
ξ_3	3	-2*1/2+3*1/2 = 0.5	0.25	0.125

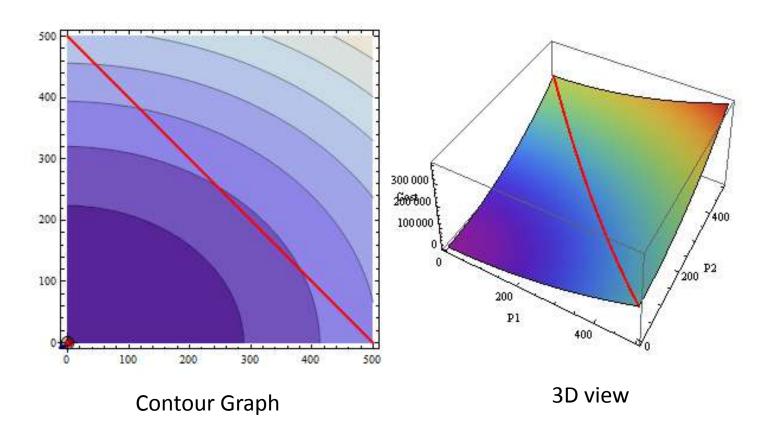
Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate analysis
- Future Plan

Decentralized Economic Dispatch

Assumptions:

- All the signals are "good"
 - No security issue
- No generation limitation (in this presentation)
- The cost functions are quadratic
- The power grid topology is fixed

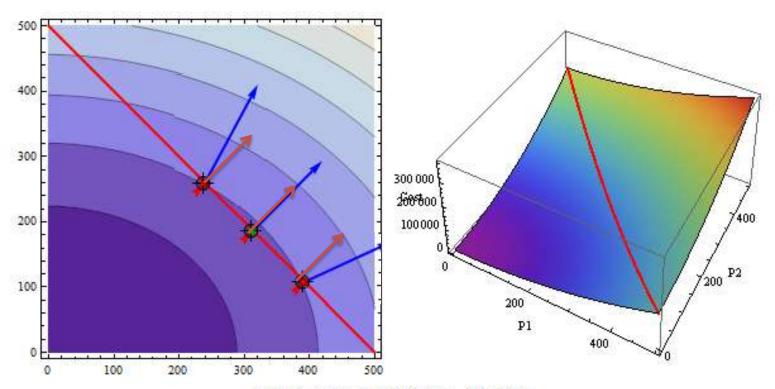


Decentralized Economic Dispatch

Economic Dispatch Problem -- A constrained optimization problem

Min: $Cost = (561+7.92P_1+0.562P_1^2)+(310+7.85P_2+0.94P_2^2)$

 $s.t.: P_1 + P_2 = 500$



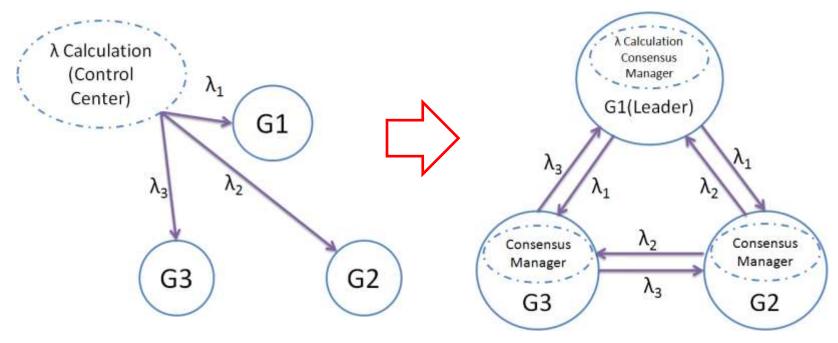
Decentralized Economic Dispatch

Economic Dispatch Problem -- A constrained optimization problem

 $Min: Cost = f(P_1, P_2)$

s.t.: $g(P_1, P_2) = P_1 + P_2 -500$

optimal solution at (312.893, 187.107)


At the optimal point: $\nabla f(x, y) = \lambda \nabla g(x, y)$

Incremental Cost Consensus

Decentralize the Economic Dispatch Problem Using Consensus Network:

When using Lagrange multiplier method solving Economic Dispatch Problem, each generator will have the same Incremental Cost at the minimum cost point

Conventional Central Controlled Communication Topology for a 3-bus system

Distribute Controlled Incremental Cost Consensus Network

Incremental Cost Consensus

Mathematical Formulation:

Assume the fuel-cost curve of each generating unit is known and expressed in terms of the output power:

$$C_i(P_{Gi}) = \alpha_i + \beta_i P_{Gi} + \gamma_i P_{Gi}^2, i=1,2,...m$$

where C_i (P_{Gi}) is the cost of generation for unit i.

 P_{Gi} is the output power of unit i

The objective is to minimize total cost of operation:

$$C_T = \Sigma C_i (P_{Gi}).$$

Subject to constrains: $\Sigma P_{Di} - \Sigma P_{Gi} = 0$;

From the conventional economic dispatch we know:

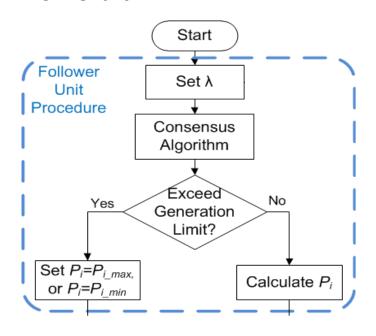
$$IC_i = \partial C_i (P_{Gi}) / \partial P_{Gi} = \lambda_i$$

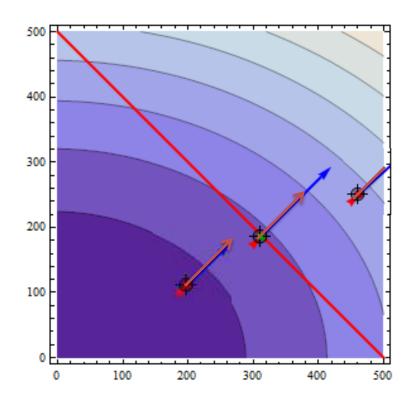
Pick λ as the information state, use the first order discrete consensus algorithm :

$$\lambda_i[k+1] = \sum d_{ij} \lambda_j[k],$$

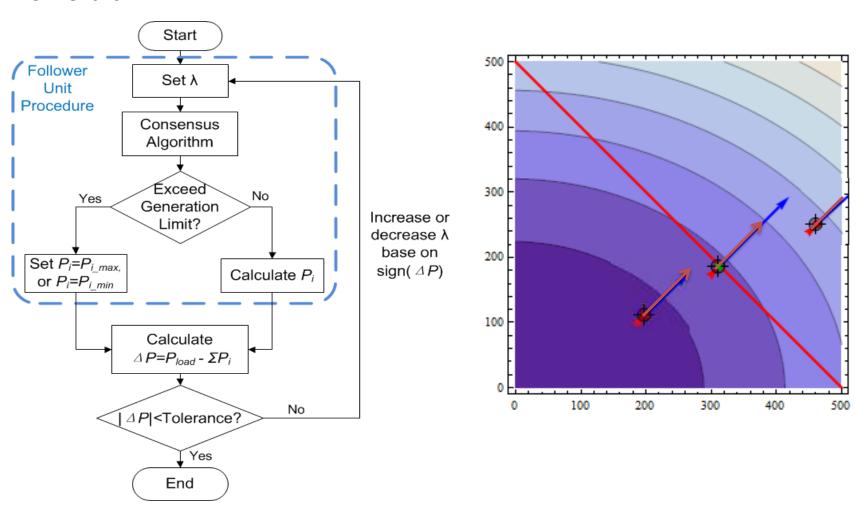
where d_{ij} is the (i,j) entry of row-stochastic matrix D_n .

The consensus algorithm for the leader (mediator/ coordinator) generator becomes:


$$\lambda_i [k+1] = \sum d_{ij} \lambda_j [k] + \varepsilon \Delta P$$
,


where $\boldsymbol{\varepsilon}$ is a scalar which controls the convergence speed.

$$\Delta P = \Sigma P_{Di} - \Sigma P_{Gi}.$$


Flow Chart:

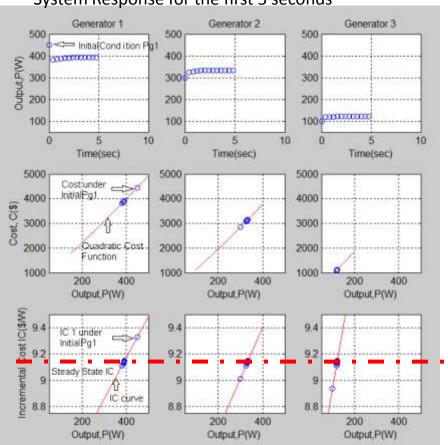
Flow Chart:

Simulation Results

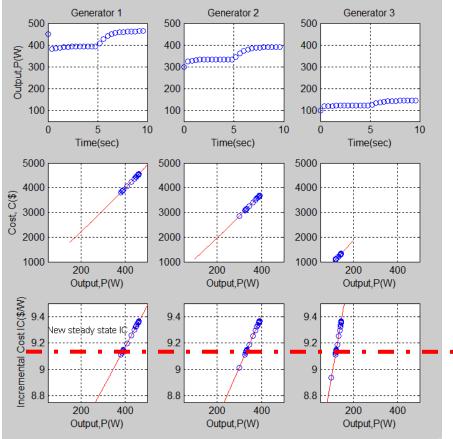
Using a fully connected 3-bus system with initial conditions:

 $P_{\rm D} = 850MW$, $P_{\rm G1}(0) = 450MW$,

 $C_1(P_{G1}) = 561 + 7.92P_{G1} + 0.001562P_{G1}^2$ \$/hr


 $P_{G2}(0)=300MW$,

 $C_2(P_{G2})=310+7.85P_{G2}+0.00194P_{G2}^2$ \$/hr


 $P_{G3}(0)=100MW$

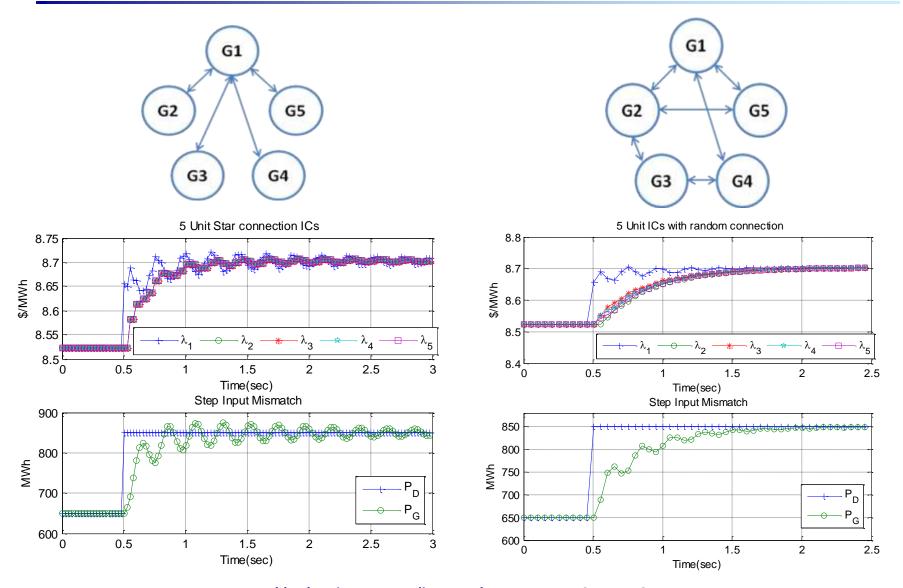
 $C_3(P_{G3})=78 +7.79P_{G3} + 0.001482P_{G3}^2$ \$/hr

System Response for the first 5 seconds

When IC Consensus algorithm reach the steady state, the final IC we obtained is equal to the λ which calculated by using the Lagrange multiplier method

Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate Analysis
- Future Plan


Convergence Rate Analysis

The convergence rate of Incremental Cost Consensus (ICC) algorithm can be affected by following configurations:

- General configurations(which also apply to conventional EDP):
 - Inertia of synchronous generators
 - Power grid topology
 - System sampling rate
 - Signal transmission delay
- Feature configurations (which only valid when using ICC):
 - Communication topology
 - Location of leader
 - Weighting of the edges of communication network

Communication Topology

Future Renewable Electric Energy Delivery and Management Systems Center

The Location of Leader

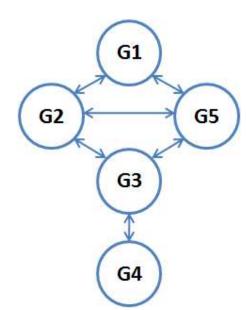
Centrality indices have been tested:

C_D: Degree centrality (Nieminen 1974)

C_B: Betweenness centrality (Anthonisse 1971, Freeman 1979)

C_c: Closeness centrality (Sabidussi 1966)

C_F: Eigenvector centrality (Bonacic 1972)


C_s: Subgraph centrality (Estrada and Rodriguez-Velazquez 2005)

Node centralities value calculated by different indices: (the larger the better)

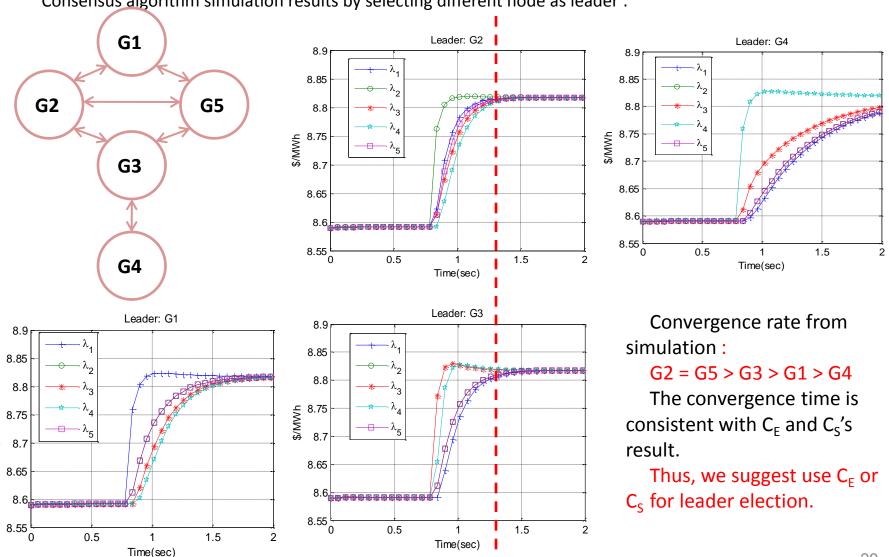
Node	C _D	C _B	C _C	C _E	C_S
1	2	0	0.14	0. 41	3.03
2	3	0.2	0.2	0. 54	4.33
3	3	0.6	0.2	0. 47	3.82
4	1	0	0. 13	0. 18	1.67
5	3	0.2	0. 2	0. 54	4.33

Example:

For a given topology:

The ranking of five nodes based on different centrality measure are:

 C_D and C_C : G2 = G3 = G5 > G1 > G4.


 C_B : G3 > G2 = G5 > G1 = G4

 C_F and C_S : G2 = G5 > G3 > G1 > G4

The Location of Leader

Outline

- Background
- Motivations & Goal
- Technical Approach
- Incremental Cost Consensus Algorithm
 - Problem Formulation
 - Convergence Rate Analysis
- Future Plan

Threats and Future Work

- Detailed Greenhub distributed control modeling and simulation
 - Extend to full Greenhub scale
 - Include both communication network and power grid and their interactions
 - Use dynamic topology to simulate "Plug-and-Play" scenario
- Intelligent distributed control algorithms for FREEDM Greenhub
 - Effectively select leaders in the consensus algorithms to guarantee fastest convergence rate
 - Adjust appropriate weightings during consensus updating
- Analyze the robustness of algorithms
 - Package Loss
 - Link failure
 - Node failure
- Investigate the bandwidth limitation issue
 - Develop and implement adaptive sampling strategies
 - Develop and implement distributed bandwidth allocation algorithms
- Investigate network delay effects on the Greenhub distributed control
 - Develop corresponding network delay compensation algorithms

Related Publications

- 1. Z. Zhang, M. Chow, "Consensus Algorithms for Distributed Controlled FREEDM Systems," Conference record, NSF FREEDM Annual Meeting, Tallahassee, FL, May, 2010.
- 2. B. McMillin, *IEEE*, R. Akella, D. Ditch, G. Heydt, Z. Zhang and M-Y. Chow, "Architecture of a Smart Microgrid Distributed Operating System", *IEEE Power Systems Conference & Exposition*, Phoenix, AZ, 2011.
- J Mitra, N Cai, M-Y Chow, S Kamalasadan, W Liu, W Qiao, S N Singh, A K. Srivastava, S K. Srivastava, G K. Venayagamoorthy and Z Zhang, "Intelligent Methods for Smart Microgrids" panel paper, 2011 IEEE PES General Meeting, Detroit, Michigan, USA
- Ziang Zhang and Mo-Yuen Chow, "Incremental Cost Consensus Algorithm in a Smart Grid Environment," Proceedings of IEEE Power & Energy Society General Meeting 2011, under review
- 5. Ziang Zhang and Mo-Yuen Chow, "The Convergence Analysis of Incremental Cost Consensus Algorithm under Different Communication Network Topologies in a Smart Grid," *IEEE Transactions on Power Systems*, under review.

FREEDM website / Members Only/ Research Groups / Distributed Grid Intelligence / Distributed Control of FREEDM System

Acknowledgements: This work is partially supported by the National Science Foundation (NSF) under Award Number EEC-08212121.